WHEN CHILDHOOD HURTS

The Lifelong Impact of Adverse Childhood Experiences (ACE's) on Mental and Physical Health

Dr Alicia Porter Child Psychiatrist

WHY ACE'S MATTER IN PAEDIATRICS?

- 67% of children report at least one ACE
- 1 in 8 experience ≥4 ACEs
- Childhood adversity is a public health crisis.
- Developmental, psychiatric, and physical health consequences

'What's experienced in childhood may be carried in the body for life.'

Dr Nadine Burke Harris

WHAT ARE ACE's?

- Original CDC-Kaiser ACE Study (1998): 10 categories
- Abuse: physical, emotional, sexual
- Neglect: physical, emotional
- Household dysfunction: domestic violence, substance use, mental illness, incarceration, divorce
- Expanded ACEs: community violence, poverty, racism, bullying, foster care, loss of a caregiver

ADVERSE CHILDHOOD EXPERIENCES INCLUDE:

ADVERSE CHILDHOOD EXPERIENCES HAVE BEEN LINKED TO:

High prevalence of multiple adversities:

ACE's IN SOUTH AFRICA

Violence exposure, orphanhood due to HIV/AIDS, poverty, parental substance use

ACEs are not evenly distributed-most common in under-resourced, high-trauma communities

ACE research remains underrepresented in African data, but local evidence aligns with global trends

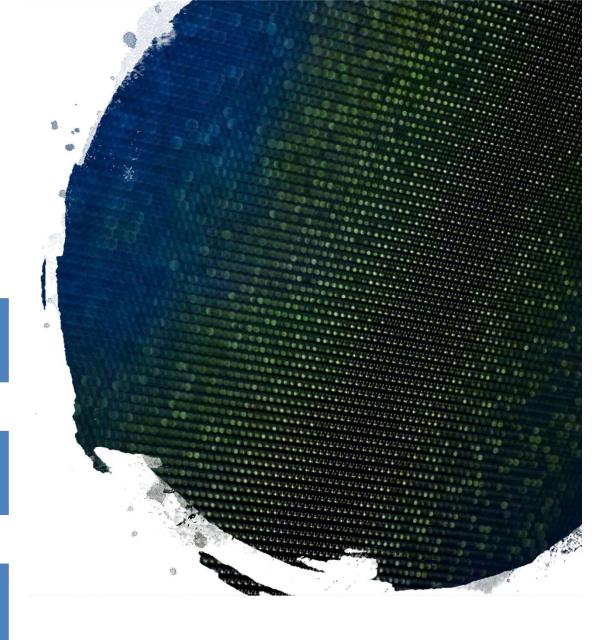
Childhood adversity → disrupted neurodevelopment → social/emotional/cognitive impairment → risky behaviours → disease, disability, early death

THE ACE PYRAMID (CDC FRAMEWORK)

Emphasises lifelong trajectory and intergenerational impact

'TRAUMA CHANGES THE BRAIN'

TRAUMA CHANGES BRAIN ARCHITECTURE


Children's brains are *highly plastic* and shaped by experiences

Chronic or toxic stress from ACE's disrupts neurodevelopment

Especially in the first 1000 days of life

CORE NEUROBIOLOGICAL EFFECTS

1. Amygdala (Fear/Threat Centre)

- Becomes overactive
- Leads to heightened fear response, emotional reactivity, hypervigilance
- Child may appear 'aggressive', 'impulsive' or 'defiant', but is stuck in survival mode

2. Hippocampus (Memory and Learning)

- Reduced volume in children exposed to trauma
- Impacts working memory, learning, and contextualising experiences
- These children may struggle academically and have difficulty processing trauma narratives

CORE NEUROBIOLOGICAL EFFECTS

3. Prefrontal Cortex (Executive Function)

- Development is delayed or disrupted
- Impairs impulse control, attention, decision-making, and emotional regulation
- Child may struggle with planning, regulating mood, or socially appropriate behaviour

4. Corpus Callosum

- Connectivity between hemispheres can be reduced
- Leads to difficulty integrating emotion and language- 'acting out' rather than verbalising distress

HPA AXIS DYSREGULATION

Chronic stress from ACEs leads to dysregulation of the Hypothalamic-Pituitary-Adrenal (HPA) axis

Elevated cortisol levels → toxic to neurons over time

Results in **immune dysregulation**, inflammation, and vulnerability to physical illness

NEURODEVELOPMENTAL DISRUPTION = MISDIAGNOSIS RISK

- Children exposed to trauma may be misdiagnosed with ADHD, ODD, learning disorders, or bipolar disorder, when the root issue is chronic dysregulation due to toxic stress.
- The brain becomes wired for survival, not learning.
- In unsafe environments, the brain prioritises fight/flight/freeze
- This shifts resources away from growth, learning, and exploration
- Trauma teaches the brain that the world is unsafe, relationships are unpredictable, and the child must be hyper-alert to survive

A TRAUMA-AFFECTED BRAIN IS NOT BROKEN, IT'S ADAPTIVE

'Their behaviour is communication, not pathology.' Bruce Perry, The Boy Who Was Raised as a Dog

How Trauma and ACEs Impact Brain Development

Amygdala (Fear Centre)

△ Overactive

→ Hypervigilance, fear, aggression

Hippocampus (Memory)

☐ Shrinks

→ Learning problems, poor memory

Prefrontal Cortex (Regulation)

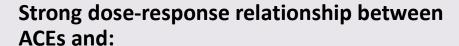
☐ Underdeveloped → Impulsivity, poor decision-making

Corpus Callosum (Integration)

☐ Reduced connectivity

→ Difficulty linking thoughts and feelings

HPA Axis (Stress Response)


☐ Cortisol overload

→ Chronic stress, illness risk

"The brain becomes wired for survival, not learning."

MENTAL HEALTH CONSEQUENCES

Depression

Anxiety

PTSD

ADHD

Substance use

Suicidality

Early trauma affects attachment, emotional regulation, and identity formation

PHYSICAL HEALTH CONSEQUENCES

Strong links with:

- Cardiovascular disease
- Diabetes
- Autoimmune disease
- Asthma
- Obesity
- Early mortality

Mechanisms:

Chronic stress → immune dysregulation, inflammation

Risk behaviours: smoking, poor diet, physical inactivity

KEY STUDIES AND EVIDENCE

- Felitti et al. (1998): ≥4 ACEs-12× risk of suicide attempts
- Anda et al. (2006): ACEs linked to heart disease, cancer, stroke
- Perry and Pollard (1997):
 Maltreatment disrupts neural development
- South African ACE studies: Link to academic failure, behavioural problems, HIV risk behaviours
- Mathews et al. (2020): ACEs and academic failure in South Africa

CASE REFLECTION: SIPHO'S STORY

- **Sipho**, an 11-year-old boy from Alexandra township, is referred to your clinic for 'poor concentration' and 'aggressive outbursts' at school. He has already been suspended twice. Teachers suspect ADHD.
- On further assessment:
- His father was killed in gang violence when Sipho was 5.
- His mother works long hours and has untreated depression.
- Sipho witnessed a home robbery at age 8.
- He often goes to bed hungry and has been physically punished by an older cousin who helps with caregiving.
- Observations:
- Easily startled, avoids eye contact, fidgets constantly.
- Displays 'shutdown' behaviour during assessments, with moments of sudden aggression when challenged.
- Struggles to verbalise emotions and becomes overwhelmed easily.

Without trauma-informed care, he may be labelled as 'naughty', 'non-compliant' or 'treatment-resistant'.

CLINICAL INTERPRETATION (Link to Brain Development)

Amygdala: Overactive- Sipho is hypervigilant, perceives threat in neutral interactions.

Hippocampus: Struggles with memory recall and academic learning.

Prefrontal cortex: Difficulty regulating impulses and modulating emotions.

HPA axis: Possibly dysregulated- chronic stress may be contributing to sleep and immune disturbances.

THE ACE SCORE IS NOT DESTINY

ACEs are a risk factor, not a diagnosis

Resilience, **relationships**, and **protective factors** mitigate the impact

Trauma-informed systems shift the question from:

'What's wrong with you?' to 'What happened to you?'

RESILIENCE AND NEUROPLASTICITY

Brain is not broken, it's adaptive

Protective factors: relationships, routine, regulation, community support

Early intervention can rewire the brain toward healing

CLINICAL IMPLICATIONS FOR PAEDIATRICIANS

- Screen for ACEs with sensitivity and safety
- Integrate trauma-informed care into paediatric settings:
- Predictability
- Empathy
- Regulation strategies
- Work closely with psychologists, social workers, schools
- Advocate for upstream
 prevention: parenting
 support, community safety,
 mental health access

WHAT CAN WE DO?

1

At the bedside:

Recognise trauma symptoms, not just pathology

2

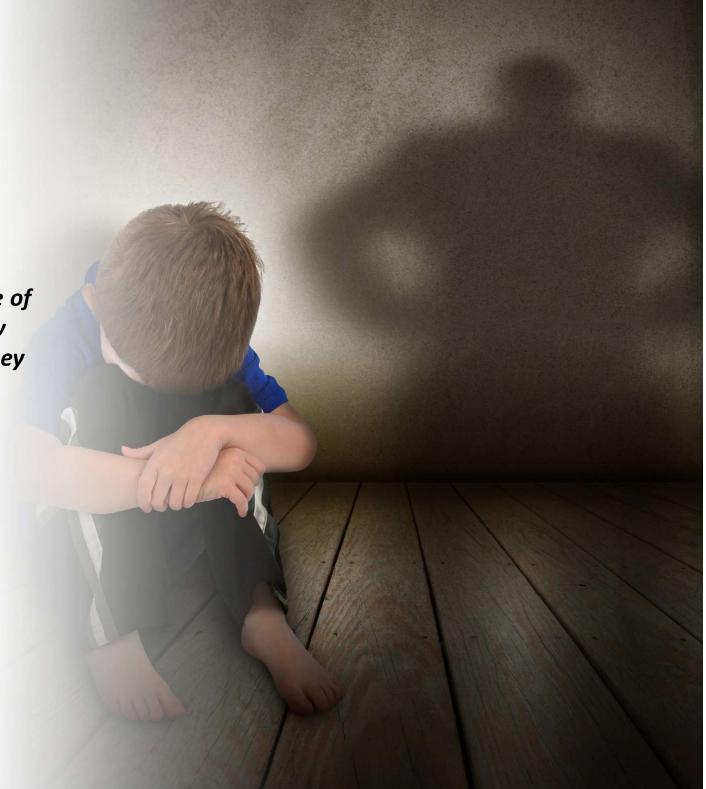
In the clinic: Build relationships as therapeutic tools

3

In the system:

Support teacher wellness, parental mental health, social protection programs

KEY TAKE-HOME MESSAGES


ACEs have lifelong physical and mental health impacts

Trauma changes the brain-but relationships and resilience can heal it

Paediatricians are in a powerful position to intervene early, advocate, and empower families

'Behaviour is the language of trauma. Children will show you before they tell you they are in distress'

REFERENCES

- 1. Felitti VJ et al. (1998). Relationship of childhood abuse and household dysfunction to leading causes of death.
- 2. Burke Harris N. (2018). The Deepest Well
- 3. Perry BD, Pollard R. (1997). Altered brain development following global neglect.
- 4. Mathews S et al. (2020). ACEs in South Africa: Towards a better understanding of child vulnerability.
- 5. Shonkoff JP et al. (2012). The lifelong effects of early childhood adversity and toxic stress.